Ricardo Menchaca Méndez

Investigador



Profesor titular en el Laboratorio de Comunicaciones y Redes de computadoras del CIC-IPN. En 2013 obtuvo su Doctorado en Ciencias de la Computación por parte de la Universidad de California en Santa Cruz bajo la dirección del Profesor Dimitris Achlioptas. Ha publicado múltiples artículos científicos en revistas y conferencias que han sido citados más de 100 veces hasta la fecha. Sus intereses de investigación actual son estructuras aleatorias, optimización combinatorial, análisis y diseño de algoritmos y aprendizaje de máquina.



Transformers for Tabular Data

Tabular data is a widely used data format in machine learning because it can naturally describe many different phenomena. However, deep learning has not been as successful with tabular data as with other applications such as natural language processing or vision. In this paper, we demonstrate that Transformers can perform better than other methods for tabular data. We argue that this is because Transformers can function as an efficient dynamic feature selection algorithm. We introduce a measure that captures the cumulative attention that a feature gets across all the layers of the Transformer. Our experiments revealed that Transformers learn to give more cumulative attention to relevant features, which is important for high-dimensional datasets where many features may be irrelevant or the relevant features may change depending on the input. Moreover, Transformers can handle a variable number of features with the same number of parameters. This contrasts with other machine learning models whose parameters increase with the number of features, requiring larger datasets to deduce relationships among features effectively.







  9